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Our main contribution
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Matrix-variate normal model makes
spatiotemporal covariance tractable

One generative model captures
many existing analyses [1]

Yi | Fi,Bi,Z,Wi,Σi,Ω ∼

MN (FiZ + BiX + JW, ρ2i Σ,Ω)

Fi | C,U ∼MN (0,C,U)

Z | D,V ∼MN (0,D,V)

Bi | G,K ∼MN (β0,G,K)

Wi | H,R ∼MN (W0,H,R).

• Yi: data for subject i. X/J are temporal/s-
patial design matrices.

• This poster: temporal cov. Ω is AR(1), spa-
tial Σ,C are diagonal.

brainiak.matnormal: a
prototyping tool for
matrix-normal models

MN-RSA implemented in <60 lines of code!

rsa_cov = CovFullRankCholesky(size=k)
space_noise_cov = CovDiagonal(size=v)
time_noise_cov = CovAR1(size=t)
params = [rsa_cov.get_optimize_vars (),

time_noise_cov.get_optimize_vars (),
space_noise_cov.get_optimize_vars ()]

loss = -(time_noise_cov.logp +
space_noise_cov.logp +
rsa_cov.logp +
matnorm_logp_marginal_row(Y,

row_cov=time_noise_cov ,
col_cov=space_noise_cov ,
marg=X, marg_cov=rsa_cov ))

optimizer.minimize(loss)
U = rsa_cov.Sigma
C = cov2corr(U)

Automatic marginalization and covariance
structure selection.

MN-ISFC: new MLE estimator
• Guaranteed to return valid covariance,

comparable RMSE to original method[4].
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MN-RSA: faster and more accurate at large data, unbiased

Yi | Fi,Bi,Z,Wi,Σi,Ω ∼

MN (FiZ + BiX+JW, ρ2i Σ,Ω)

Fi | C,U ∼MN (0,Σ,U)

Z | D,V ∼MN (0,D,V)

Bi | G,K ∼MN (β0,Σ,K)

Wi | H,R ∼MN (W0,H,R).

• Mitigates bias like BRSA [2] by marginalizing
B.

• Fewer parameters (different noise model).

• More conservative under null.

Closed form, unbiased estimator:
Assuming X 6= 0,K 6= 0,Ω−1 6= 0:

K̂ =(X>X)−1X>(
1

v
YΣ−1Y> − Ω)X(X>X)−1

E[K̂] =(X>X)−1X>
(

1

v
E[YΣ−1Y>]− Ω

)
·X(X>X)−1

=(X>X)−1X>
(

(Ω + XKX>)
1

v
Tr[Σ−1Σ]− Ω

)
·X(X>X)−1

=K
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MN-SRM: improved reconstruction, fewer parameters

• ECM algorithm for fast estimation.

• Fewer parameters than original SRM [3] by
marginalizing Fi instead of Z.

• Better out-of-sample reconstruction (but worse
feature selection).

Yi | Fi,Bi,Z,Wi,Σi,Ω ∼

MN (FiZ+BiX + JW, ρ2i Σ,Ω)

Fi | C,U ∼MN (0,C,U)

Z | D,V ∼MN (0,D,V)

Bi | G,K ∼MN (β0,G,K)

Wi | H,R ∼MN (W0,H,R).
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Paper and code

Paper (AISTATS 2018):

http://arxiv.org/abs/1711.03058

Code:

Under review for inclusion in

BrainIAK (brainiak.org).
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