

Our main contribution ISFC loint Modelin Matrix-normal models BRSA SRM

The matrix-variate normal distribution

spatiotemporal covariance tractab

MN-RSA: faster and more accurate at large data, unbiased

- $\mathbf{Y}_i \mid \mathbf{F}_i, \mathbf{B}_i, \mathbf{Z}, \mathbf{W}_i, \Sigma_i, \Omega \sim$
- $\mathcal{MN}(\mathbf{F}_{i}\mathbf{Z}+\mathbf{B}_{i}\mathbf{X}+\mathbf{JW},\rho_{i}^{2}\Sigma,\Omega)$ $\mathbf{F}_i \mid \mathbf{C}, \mathbf{U} \sim \mathcal{MN}(0, \Sigma, \mathbf{U})$ $\mathbf{Z} \mid \mathbf{D}, \mathbf{V} \sim \mathcal{MN}(0, \mathbf{D}, \mathbf{V})$ $\mathbf{B}_i \mid \mathbf{G}, \mathbf{K} \sim \mathcal{MN}(\boldsymbol{\beta}_0, \boldsymbol{\Sigma}, \mathbf{K})$ $\mathbf{W}_i \mid \mathbf{H}, \mathbf{R} \sim \mathcal{MN}(\mathbf{W}_0, \mathbf{H}, \mathbf{R}).$
- Mitigates bias like BRSA [2] by marginalizing В.
- Fewer parameters (different noise model).
- More conservative under null.

Closed form, unbiased estimator: Assuming $\mathbf{X} \neq 0, \mathbf{K} \neq 0, \Omega^{-1} \neq 0$:

$$\widehat{\mathbf{K}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} (\frac{1}{v} \mathbf{Y} \Sigma^{-1} \mathbf{Y}^{\top} - \Omega) \mathbf{X} (\mathbf{X}^{\top} \mathbf{X})^{-1}$$
$$\mathbb{E}[\widehat{\mathbf{K}}] = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \left(\frac{1}{v} \mathbb{E}[\mathbf{Y} \Sigma^{-1} \mathbf{Y}^{\top}] - \Omega \right)$$
$$\cdot \mathbf{X} (\mathbf{X}^{\top} \mathbf{X})^{-1}$$
$$= (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \left((\Omega + \mathbf{X} \mathbf{K} \mathbf{X}^{\top}) \frac{1}{v} \operatorname{Tr}[\Sigma^{-1} \Sigma] - \Omega \right)$$
$$\cdot \mathbf{X} (\mathbf{X}^{\top} \mathbf{X})^{-1}$$
$$= \mathbf{K}$$

One generative model captures many existing analyses [1]

- $\mathbf{Y}_i \mid \mathbf{F}_i, \mathbf{B}_i, \mathbf{Z}, \mathbf{W}_i, \Sigma_i, \Omega \sim$
- $\mathcal{MN}(\mathbf{F}_{i}\mathbf{Z} + \mathbf{B}_{i}\mathbf{X} + \mathbf{JW}, \rho_{i}^{2}\Sigma, \Omega)$
- $\mathbf{F}_i \mid \mathbf{C}, \mathbf{U} \sim \mathcal{MN}(0, \mathbf{C}, \mathbf{U})$
- $\mathbf{Z} \mid \mathbf{D}, \mathbf{V} \sim \mathcal{MN}(0, \mathbf{D}, \mathbf{V})$
- $\mathbf{B}_i \mid \mathbf{G}, \mathbf{K} \sim \mathcal{MN}(oldsymbol{eta}_0, \mathbf{G}, \mathbf{K})$
- $\mathbf{W}_i \mid \mathbf{H}, \mathbf{R} \sim \mathcal{MN}(\mathbf{W}_0, \mathbf{H}, \mathbf{R}).$
- \mathbf{Y}_i : data for subject *i*. \mathbf{X}/\mathbf{J} are temporal/spatial design matrices.
- This poster: temporal cov. Ω is AR(1), spatial Σ , **C** are diagonal.

RMSE (synthetic ground truth)

Runtime (32–core Xeon node)

MN-SRM: improved reconstruction, fewer parameters

• ECM algorithm for fast estimation.

 $\mathbf{Y}_i \mid \mathbf{F}_i, \mathbf{B}_i, \mathbf{Z}, \mathbf{W}_i, \Sigma_i, \Omega \sim$

brainiak.matnormal: a prototyping tool for matrix-normal models

MN-RSA implemented in <60 lines of code!

rsa_cov = CovFullRankCholesky(size=k) space_noise_cov = CovDiagonal(size=v) time_noise_cov = CovAR1(size=t) params = [rsa_cov.get_optimize_vars(), time_noise_cov.get_optimize_vars(), space_noise_cov.get_optimize_vars()] loss = -(time_noise_cov.logp + space_noise_cov.logp + rsa_cov.logp + matnorm_logp_marginal_row(Y, row_cov=time_noise_cov, col_cov=space_noise_cov, marg=X, marg_cov=rsa_cov)) optimizer.minimize(loss) U = rsa_cov.Sigma

C = cov2corr(U)

Automatic marginalization and covariance structure selection.

MN-ISFC: new MLE estimator • Guaranteed to return valid covariance, comparable RMSE to original method[4].

Runs

BRSA MN-RSA

- Fewer parameters than original SRM [3] by marginalizing \mathbf{F}_i instead of \mathbf{Z} .
- Better out-of-sample reconstruction (but worse feature selection).

 $\mathcal{MN}(\mathbf{F}_{i}\mathbf{Z} + \mathbf{B}_{i}\mathbf{X} + \mathbf{JW},
ho_{i}^{2}\Sigma, \Omega)$ $\mathbf{F}_i \mid \mathbf{C}, \mathbf{U} \sim \mathcal{MN}(0, \mathbf{C}, \mathbf{U})$ $\mathbf{Z} \mid \mathbf{D}, \mathbf{V} \sim \mathcal{MN}(0, \mathbf{D}, \mathbf{V})$ $\mathbf{B}_i \mid \mathbf{G}, \mathbf{K} \sim \mathcal{MN}(\boldsymbol{\beta}_0, \mathbf{G}, \mathbf{K})$ $\mathbf{W}_i \mid \mathbf{H}, \mathbf{R} \sim \mathcal{MN}(\mathbf{W}_0, \mathbf{H}, \mathbf{R}).$

Classification performance

Est. Corr, synth. data (500 TRs, 30 src., 10 subjs.)

+ SRM

+ ICA + MN–SRM (Identity Cov.)

+ PCA + MN-SRM (Modeled Cov.)

References

[1] Shvartsman, M, Sundaram, N, Aoi, M. C., Charles, A. S., Wilke, T. C., & Cohen J. D. AIS-TATS 2018; [2] Cai, M. B., Schuck, N. W., Pillow, J. W., & Niv, Y. NIPS 2016; [3] Chen, P.-H., Chen, J., Yeshurun, Y., Hasson, U., Haxby, J., & Ramadge, P. J. NIPS 2015; [4] Simony, E., Honey, C. J., Chen, J., Lositsky, O., Yeshurun, Y., Wiesel, A., & Hasson, U. Nat. Comms. 7:12141 (2016).