

(intel)

BrainIAK Tutorials: User-friendly tutorials for cutting-edge MVPA methods

Yale

Manoj Kumar¹, Cameron T. Ellis², Nicholas B. Turk-Browne², Peter J. Ramadge¹, Kenneth A. Norman¹

¹Princeton University, ²Yale University

Learning Advanced fMRI Analysis

Pre-Processing: There exist multiple packages (AFNI, FSL, SPM, FreeSurfer, fmriprep) to perform fMRI pre-processing and basic statistical analysis. These packages come with detailed tutorials, examples, and bootcamps.

Advanced analysis: Users often face the following challenges when trying to learn advanced fMRI analysis:

- Custom analysis scripts are often used by researchers.
- Documentation of analysis techniques is often inadequate.
- Few training materials are available for performing analysis on

high performance clusters (HPC).

Our Goal: Create user-friendly learning materials for advanced fMRI analysis.

- Basics to advanced fMRI analysis on HPC.
- Detailed, step-by-step execution of analysis.
- Use open source tools for free sharing and collaboration.

Publicly available datasets: Block Designs, Event Related Designs, Movie Datasets.

B. Tutorial on individual machine

C. Tutorial topics - from the basics to the advanced.

Basics	Classification/	Advanced	
	Correlation	Techniques	

Data Loading	Cross-validation	Searchlights
Z-scoring	Dimensionality Reduction	Full Correlation Matrix Analysis ^{5,6} (FCMA)
Plotting Time-Series	RSA	Functional Alignment: Inter-Subject Correlation ³ , Inter-Subject Functional Correlation ⁴ (ISFC),
Haemodynamic Shift		Shared Response Model ²
	Pipelines	Real-time fMRI ⁷

Haemodynamic Shift

D. Samples of student generated plots

Parcel Correlation Matrix

Classification Accuracy

Highlights

These tutorials were successfully used as part of an advanced fMRI analysis course at Yale University.

Novice users were performing advanced analysis by the end of the course.

These materials can be easily integrated with other teaching materials.

Acknowledgements

Funding for this project was provided by Intel labs.

We would like to thank the many contributors to the BrainIAK code base, BrainIAK examples, and the tutorial alpha-testing team for their contributions.

Plot Credit: Clara Colombatto, Jacob Prince, Qihong Liu, and Sreejan Kumar.

Future Work

These materials are undergoing alpha-testing.

Princeton Fall 2018 course.

Public release is planned in early 2019. Use the QR code to view sample tutorials, and to signup for updates on the tutorials.

References

1. Anderson, M. J., Capota, M., Turek, J. S., Zhu, X., Willke, T. L., Wang, Y., ... Norman, K. A. (2016). Enabling factor analysis on thousand-subject neuroimaging datasets (pp. 1151–1160). IEEE. https://doi.org/10.1109/BigData.2016.7840719

2. Chen, P.-H. (Cameron), Chen, J., Yeshurun, Y., Hasson, U., Haxby, J., & Ramadge, P. J. (2015). A Reduced-Dimension fMRI Shared Response Model. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in Neural Information Processing Systems 28 (pp. 460–468). Curran Associates, Inc.

3. Hasson U, Nir Y, Levy I, Fuhrmann G, Malach R (2004) Intersubject synchronization of cortical activity during natural vision. Science 303:1634-1640.

4. Simony, E., Honey, C. J., Chen, J., Lositsky, O., Yeshurun, Y., Wiesel, A., & Hasson, U. (2016). Dynamic reconfiguration of the default mode network during narrative comprehension. Nature Communications, 7, 12141. doi:10.1038/ncomms12141

Wang, Yida, et al. "Full correlation matrix analysis (FCMA): An unbiased method for task-related functional connectivity." Journal of neuroscience methods 251 (2015): 108-119.
Wang, Yida, et al. "Real-time full correlation matrix analysis of fMRI data." Big Data (Big Data), 2016 IEEE International Conference on. IEEE, 2016.

7. deBettencourt, M. T., Cohen, J. D., Lee, R. F., Norman, K. A., & Turk-Browne, N. B. (2015). Closed-loop training of attention with real-time brain imaging. Nature Neuroscience, 18(3), 470–475. https://doi.org/10.1038/nn.3940

BrainIAK: http://brainiak.org Other Posters: BrainIAK **2023**, Matrix-Norm **2535**, Real-Time **2045**; **2858**